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This article studies the Deming cost model using a Bayesian
approach when the quality characteristic of items is assumed
to have a normal distribution with unknown mean. Pre-
viously, researchers studied this model by the go/no-go data.
Through a Bayesian approach, the model consists of a two-
stage decision that minimizes the expected total cost: The
first stage decision is to determine the optimal sample size,
and the second stage decision is to decide whether to stop
inspection or continue to inspect the remaining items of the
lot. Numerical integration is used to find an approximate
solution to the model. An illustrative example is given and
a numerical analysis of this example is performed to realize
the effects of the model parameters. The cost difference
between using the measurement data and the corresponding
go/no-go data under the same probability assumptions and
cost structure is also investigated.

Keywords Bayesian decision analysis; Decision trees;

Inspection sampling.

1. INTRODUCTION

Inspection procedure is often used as a tool for
quality assurance in many manufacturing systems. If
we are not sure the components in need are high qual-
ity or the quality of the process declines, then some
procedure should be taken. In such situations, accep-
tance sampling plans and 100% inspection plans are
common short-term approaches. There are various
approaches in the determination of an inspection pro-
cedure, and the decision theoretic approach is prob-
ably the most reasonable method to model this
problem on the basis of economic considerations and
sampling information (Fink and Margavio, 1994).
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To classify an item in the lot as either defective or
nondefective (go/no-go) is an attribute sampling
inspection problem. To measure the quality of an item
in the lot by a continuous scale is a variable sampling
inspection problem. A variable sampling inspection
problem can become an attribute sampling problem
if the procedure only counts the number of items non-
conforming to specification limit(s) in the sample and
uses this number to decide whether the remaining items
of the lot are accepted. To design a variable sampling
plan, we need to specify the sample size and the accep-
tance limit(s). If the measured value from the sampling
variables falls within the acceptance limit(s), the lot is
accepted. Otherwise, the lot is rejected. Usually, the
acceptance limit(s) will depend on the probability
assumptions of the inspection model, the sample size,
and the loss function. A step loss function implies that
the customers are completely satisfied with the items
conforming to the specifications and become comple-
tely unsatisfied when the value of the performance
variable falls outside the specifications. A loss function
is polynomial if the loss is polynomial in the value
deviated from an ideal (target) value for an accepted
item.

Moskowitz and Tang (1992) used the cost struc-
ture proposed by Schmidt et al. (1974) to develop a
Bayesian variables acceptance sampling model with
the following probability assumptions: The perfor-
mance variable has a normal distribution with
unknown mean, which is assumed to be normally dis-
tributed as well. Tagaras (1994) studied a similar cost
structure under the same probability assumptions but
assumed that the inspection was destructive and there-
fore the cost of inspection per unit was greater than the
cost of rejection per unit. Yeh and Van (1997) devel-
oped a Bayesian double-variable sampling model with
the polynomial loss function under the same probabil-
ity assumptions.

Deming (1982) discussed a (n, ¢) rectifying
attributes sampling plan relative to two different cost
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setups, (ki, k), where n is the sample size, ¢ is the accep-
tance number, k; is the cost per unit to inspect an item,
and k, is the cost per unit of a nonconforming item that
is either placed in an assembly that fails or that enters
the stream of commerce and subsequently fails.
Usually, the k, cost is much higher than the k; inspec-
tion cost. By rectifying inspection, we mean a procedure
whereby a lot rejected by sampling inspection is 100%
inspected and all nonconforming items discovered dur-
ing inspection are replaced with conforming units.
After observing the sampling outcome, if the number
of nonconforming items in the sample of size n is
greater than the acceptance number ¢, the lot is rejected
and subject to 100% inspection. Otherwise, the lot is
accepted and all remaining items of the lot are sent to
assembly without inspection. It is noted that any non-
conforming item found in the inspection stage and in
the assembly stage will be replaced with a perfect item.
The perfect item is obtained by inspecting items of the
same quality from other resource. Depending on the
contract, the extra inspection cost to obtain a perfect
item can be charged to either the manufacturer or the
supplier. An application example of the model is the
manufacture of implantable prosthetic medical devices
(Kaminsky and Haberle, 1995). Another example
occurs in applying the surface mount technology
(SMT) to printed circuit board (PCB) assembly, where
the rework cost for replacing a non conforming electro-
nic device mounted onto the board is cheaper than the
scrap cost of the board.

Papadakis (1985), Burke et al. (1993), Vander Wiel
and Vardeman (1994), and Kaminsky and Haberle
(1995) discussed the Deming cost model by attributes
from a classical statistics point of view (i.e., the frac-
tion of conforming items in the lot, p, is known).
Rigdon (1995) discussed in detail the case where p is
unknown. In such situations, one might consider using
a Bayesian approach to minimize total cost. Applying
this approach will necessitate the need to describe p
with a probability or density function based on knowl-
edge and previous data. The book by Berger (1985)
provides several methods for quantifying prior infor-
mation as a distribution.

Lorenzen (1985) and Barlow and Zhang (1986)
discussed the Deming cost model by attributes from
a Bayesian point of view and provided computer codes
for the model using beta prior for the probability of an
item being conforming. In this article, we extend the
Bayesian approach study of this model to the variable
sampling plan, where the quality characteristic of items
has a normal distribution with unknown mean but
known standard deviation. An item is conforming if
the value of its performance variable falls within a
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two-sided specification interval. Meanwhile, we are
also interested in learning how much cost can be saved
for this model when the variable measurement data is
used as compared with the derived go/no-go type data.

The remainder of this article is organized as fol-
lows. In Section 2 the problem is described and a vari-
able sampling model is formulated based on the
Bayesian decision rule. Section 3 describes how to
obtain the corresponding attributes sampling model
from the variables sampling model. Section 4 illus-
trates an application example. Section 5 presents a
numerical analysis of this model. Finally, the conclu-
sions are summarized in the last section of this article.

2. VARIABLES SAMPLING MODEL

The Deming cost model uses rectifying inspection.
A lot rejected by sampling inspection is subject to
100% inspected. It is also assumed that this inspection
is 100% effective and that all nonconforming items dis-
covered during inspection are replaced with conform-
ing units. If a nonconforming item is put into the
assembly and results in a bad product, the product
can be repaired by the replacement of the nonconform-
ing item. Any nonconforming item detected in the
stages of inspection and assembly will be replaced with
a perfect item. The perfect item is obtained by extra
inspections on items of the same quality from other
resources.

The decision process of the Deming cost model
consists of two stages: (1) D;: determine the sample
size n, and (2) D,: after observing the sampling out-
come, decide whether to stop inspection at size n
(denoted “Sn”) or continue to inspect the N items of
the lot (denoted “CN”’). The model can be represented
as the decision tree shown in Figure 1.

The notation and definitions of parameters or
variables used are as follows:

N: Lot size
n: Sample size
X;: Performance measure of the jth item in the lot
X,: Random vector (X, X>,..., X))
U: Mean value of performance
unknown parameter
7: Prior mean of U
y: Standard deviation of the prior distribution of U
7': Posterior mean of U
7. Standard deviation of the posterior distribution
of U
Z,: Number of ‘“nonconforming”
samples
y: Realization of Z,

variable, an

items in the
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Figure 1.

: Number of “nonconforming” items in the
remainder of the lot

X: Mean of measured values from the samples

Lg,: Total cost due to making decision “Sn” on
the remainder of the lot
Lcy: Total cost due to making decision “CN”
on the remainder of the lot
M (y): Number of additional inspections to find y
conforming items
M(Zy_,): Number of additional inspections to find
Zy_, nonconforming items
P(U): Probability of an item being conforming, a

function of U

In this research, like most studies in variables sam-
pling plans, we assume that the performance variables
have conditional normal distributions; that is,
Xi,..., Xy|U =u~iidN(u,c*). The prior of the
unknown mean is also normal, U ~ N(t,y?). The con-
ditional distribution for the sample mean is normally
distributed, X|U = u ~ N(u,¢?/n). The unconditional
distribution for X is also normal, which can be shown
as follows:

X — U ~ N(0,6%/n) is independent of U and
X=X -U+U~ N(1,9" + d*/n).

Because the number of nonconforming items, y, is

a function of x = (x1,x2,...,x,), we have f(ulx,
X2y .. ,Xn,y) :f(u|X1,)C2, s 7xn) :f(u|n,f) By Bayes’
theorem, the posterior of U given data (xy,x2,...,x,) is
as follows:
£l H y
U|X]1, X2y ... 4 X xa
\/27'50’
L4 o 1)
. e 2\v/) xe NS/
V2my
/I 2 2= 2 ) /o 2

where ' = ((¢%t +ny*x) /(¢ + ny?)) and y' = (n/c*+
1 /yz)fl/ Therefore, the posterior of U is again

E(L,, |nX,y)

E(Ley |1,%,y)

Decision tree of the problem.

normally distributed with mean t’ and standard deviation
7, and sufficient statistics is (n, X) because the posterior of
U depends on the data, (x1, x2, . .., Xx;,), only through the
sample mean X.

In the case of double specification limits, [a,b],
the probability of an item being conforming given
U=u, P(u)=Pr{a < X; <b|U =u}=0((b — u)jo)—
®((a—u)/o) and the distribution of Z, given U=u
is binomial (n, P(u)), where @(-) represents the prob-
ability of the standard normal distribution.

Although the sampling outcome is (n,X,y), the
total costs for decisions “Sn” and “CN’’, respectively,
are as follows:

(Lsuln, X, y) =n-ki+ M) -ki +Zy_n- k>

“V‘M(Zan) 'kl (1)
(Lenln, X, y)=n-ki + M(y) ki +(N —n) -k
+M(ZN7n) 'kl (2)

By taking the expected total cost as the compari-
son criterion, decision ‘“Swn’” is superior to decision
“CN” if E(Lsy|n,%,y) < E(Lcn|n,%,y). Note that this
conclusion remains valid if the manufacturer is free of
the extra inspection cost because both terms (1) and (2)
contain M(y) -k + M(Zy-,) - k1. After some alge-
braic operations (see Appendix), we obtain

E(Lsn|n’75y) < E(LCN|naX7y)

E(P(U)n,%) < ()

2

if and only if

1—

where E(P(U)|n,X)

=7 [f 1/v/2n6) - e 310" .

S(uln,X)du=Pr{a< X, <b|n,x}.

The distribution of X,.|n,X is N(7,6® + ()?)
because X,y1|n, X = X401 — U+ Uln,X and X, 1—
Uln, X ~ N(0,6?) is independent of the data (n,X)
and the random variable Uln,x ~ N(7, (y)?). Thus,

we have E(P(U)|n,x):q)((b_ff)/( 0'2"‘("))/)2[))
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(( )/ (\/ o>+ (¥) )) Furthermore, because

v = ((6’t 4+ m’x)/(6*> + my?)) and 7’ is independent
of X, E(P(U)|n,X) reaches maximum when
v =(a+b)/(2), which gives X* = ((a+0b)
(6% 4+ ny?) — 26%1)/(2ny*). The value of E(P(U)|n,x)

goes down as v moves further away from (a+ b)/2.
The interval, [X;, Xg], for choosing decision “S,”
under the sample size of n can be computed as follows:

XL min{x :E(P(U)|n,x) > 1 —%, X < x*} and
2

XRr :max{Y:E(P(U)mJ) >1 —%, YZ%*}. 4)
2

In other words,

ki . .
1 - E(P(U)|n,x) gk—l if and only if ¥ € [X.,Xg]. (5)
2
The objective function of the model can be
obtained by applying the Bayesian decision rule to
the decision tree given in Figure 1.

0<n<N J_

Min / h {i{Min[E(Lsnn,f,y),E(LcN|l’l,Y7J’)]}
y=0

Priyin x}] g(®n)dx ©)

where g(X|n) is the p.d.f. of the sufficient statistic X. We
want to determine a sample size n* between 0 and N
that finds the minimum expected total cost (METC)
with respect to Eq. (6). This sample size n* is referred
to as the optimal sample size (OSS). Equation (6) can
be simplified further as follows:

Ogigr}v{n-kl—k(N—n) {E(ﬁ) —1} ki +(N—n)

/_x Min[(1— E(P(U)[n,%)) -k, k1] -g(X|n) -d%

-k, ~/_ZE<P(1U)|n,x) (1= E(P(U)|n,%))
- )

Detailed calculations related to obtaining Eq. (7)
are given in the Appendix. In the case that the manu-
facturer is free of the extra inspection cost, Eq. (7) does
not contain the second and the fourth terms.

The computation for Eq. (7) determines the OSS.
After observing the sampling outcome (x,...,Xug), We
compute Xog = (X1 + -+ X5)/O0SS. If 1—E(P(U)|
OSS,Xoss) <ki/ky or X, € [X1,Xg|, we should choose
D, ="8S,.” Otherwise, we choose D, =“CN.”
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There is no closed form for Eq. (7) and Simpson’s
three-eighths integration approximation rule is applied
to compute the integrals in this formula. During the
computations, an accurate numerical table for standard
normal distribution is helpful in computational effi-
ciency because the posterior distribution of parameter
U and the marginal distribution of sample mean X have
normal distributions. Suppose that (X;,...,Xy) are
used to represent the values of X in the numerical
integration. The value of the third term of Eq. (7) for
a sample size of n can be computed as follows:

Sum3 = 0; {Begin}
Forj=1to M
If x; €
and add it to Sum3
Else Sum3 = Sum3 + ky;
Sum3 = (N — n) - Sum3. {End}

[X1,Xg], compute (1 — E(P(U)|n,%;) - ka

Our computational experience shows that the value
of Eq. (7) as a function of sample size n behaves like
Figure 2, but the curve may not be smooth locally.
Binary search for finding the METC and its corre-
sponding OSS is not suitable to apply in such a situa-
tion. To reduce computational time and avoid missing
the METC and its corresponding OSS, we adopt the fol-
lowing searching strategy.

Start with n = 0. Compute the values of Eq. (7) for
sample sizes with multiples of 10. If the value goes
up for three consecutive searches or to the lot size N,
then the algorithm stops searching further and
takes the sample size with minimum value up to the
present search. If the sample size with minimum value
is 10-k, then the algorithm searches the OSS
within [10- (k—1),10- (k+1)] for 1 <k < N,]0, 10-
(k+1)] for k=0, and [N — 10, N] for k = N.

3. ATTRIBUTES SAMPLING MODEL

In this section, we discuss how to establish an attri-
butes sampling model based on the variable measure-
ment data. In other words, the model will use the
information of the number of nonconforming items
that comes from the variable measurement data in
the sample. This attributes sampling model needs the
probability of a component being conforming, P(U),
which is a function of parameter U and is a random
variable of the following form:

U\2
50

N|._

dx

0= [
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Figure 2. Expected cost for supplier B in sample size n.

There is no closed form for the continuous distri-
bution of P(U). The following method computes an
approximate discrete probability distribution of P(U).

The conditional probability under U = u, P(u) =
O((b—u)/o) — D((a —u)/0), is maximum when u =
(a+b)/2 and decreases as u moves away from
(a + b)/2. Partition the interval, [0,1], into M subinter-
vals of equal length with p,, =m/M, m=1,2,..., M.
Let uf =Min{u: P(u) >m/M} and ul = Max{u:
P(u) >m/M}. We have Pr{P(U) > p,} = ®((u}-
0)/7)~®((uh,~1)/7) and Pr{P(U)=pn}=Pr{P(V)
> pm—1}= Pr{P(U) = pm}.

After obtaining the approximation discrete distri-
bution for P(U), we observe the sampling data (xi,
Xs,...,Xxy) and compute the number of nonconforming
units in the sample, y = >}, », where y; =0 if
a < x; < b and y; = 1 otherwise.

In the attributes sampling model, (n, y) are suffi-
cient statistics, and the probability distribution of
Y|n, py is binomial.

Using the decision analysis similar to the variables
sampling model, we conclude the following statements:

(S1) Model objective is  Ming<u<n Y _g<,<, [Min
(E(Lsuln,y), E(Lcn|n, y))] - Pr{y|n}.

(S2) Decision “Sr” is superior to “CN” if and only if
(1 - E(P(U)|n,y)) < -

Barlow and Zhang (1986) showed that the poster-
ior distribution of P(U) has the following property:
For any prior distribution of P(U), E(P(U)|n, y)
increases in n (y fixed) and E(P(U)|n, y) decreases in
y (n fixed). We can use this property to facilitate the
computations for the attributes sampling model.

By (S2) and the property stated preiously, if
1 —E(P(U)|n,0) > ki /ky, then decision “CN” is
better regardless of the sampling outcome. Likewise,
by (S2) and the property, if 1— E(P(U)|n,n) <
k1 /k,, zero inspection is better than taking sample size
n because any sampling outcome in this sample size
will not change the decision “Sn.” For the other case,
there exists an acceptance number, ¢, 0 < ¢ < n, satis-
fying 1 —E(P(U)ln,c) <k|/ky and 1— E(P(U)|n,
c+1) > ki/k,. We would choose “Sn” if y < ¢ and
choose “CN” otherwise.

4. AN EXAMPLE

A producer decides to run a pilot batch of N = 500
articles, say, notebooks of a new type. Along with the
new product is a key component, a power adaptor,
which must provide strictly stable DC voltage at a
specification of (a, b) = (23.95, 24.05) V. The producer
itself does not manufacture the power adaptors and
must purchase them from outside resource. The inspec-
tion cost for power adaptor per item is k| = $9.25, and
the product failure cost (a product delivered to customer
with a bad power adaptor) of k; is estimated at $72.40
each. The product failure cost includes transportation
cost, customers’ dissatisfaction, and so on. The produ-
cer cooperates with three supplier candidates (A, B,
and C) and owns the data of each supplier’s adaptor
during the R&D period. Assume that the purchase cost
per item is the same for all three suppliers. Based on the
technologies and data, the producer decides to take
the values of three parameters, (o, 7, 7), with respect to
the three suppliers as shown in Table 1. The value of ©
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Table 1
METC and OSS for suppliers A, B, and C
Supplier G T y 0SS METC
A 0.0231  24.0241  0.00962 42 $4,835
B 0.0282  24.0137  0.01260 40 $4,807
C 0.0235  24.0249  0.01270 37 $5,063

could refer to the total mean performance measurement
of components in previous lots, and y could refer to the
lot-by-lot variability of the mean performance measure-
ment. Assume that the producer bears the regular and
extra inspection costs. The computational results show
that the best supplier is B with METC at $4,807 and
an optimal sample size OSS =40. In addition, by
Eq. (4), we obtain [xz,Xg| = [23.9801, 24.0165].

Assuming that after inspecting the samples of 40
components from supplier B, the sample mean and
the number of nonconforming items are X = 23.985
and y = 7, respectively. Because X = 23.985 is within
the interval [x,Xg], we should stop inspection and
send the remaining components of the lot into
assembly. Another computation results in the two
expected total costs E(Lg,|OSS,x)=$4,675 and
E(Lcy |OSS, %) = $5,424, respectively. The expected
number of extra inspections for compensation is
E(M(y)|OSS, x) + E(M(Zy_,)|0SS, x) = 86.3. All
three values are obtained by applying the Simpson’s
three-eighths approximation integration rule to the
formulae given in the Appendix. The expected extra
inspection ratio at the second stage decision is
0.1765, which is obtained by dividing the expected
number of extra inspections by the lot size N = 500.
The producer will pay the extra inspection cost but
no extra purchase cost.

sample size
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5. NUMERICAL ANALYSIS

In this section, we present a numerical analysis for
supplier B under the Deming cost model. The model
parameters considered in the analysis are lot size N,
cost ratio kj/k;, and probability model parameters
(o, 7, 7). A comparison on METC and OSS between
the variables sampling model and the corresponding
attributes sampling model under the same probability
assumptions and cost structure is also presented.

Figure 2 shows the variation of expected total cost
with respect to different sample sizes for supplier B
under lot size N = 500. Our experimental results show
that the expected cost as a function of the sample size
behaves like the curve shown in Figure 2. This result pro-
vides a good reference for us to develop an efficient algo-
rithm for finding the METC and its corresponding OSS.

Define unity cost as the METC per unit; that is,
METC/N. Figure 3 illustrates the behaviors of the
unity cost and the OSS as the value of N varies. The
unity cost is decreasing and convex in N, which implies
that the marginal effect on the cost saving of this
model is decreasing as the lot size N becomes larger
and larger. On the other hand, the OSS is concave
and increasing in lot size N. In other words, the mar-
ginal increase of the OSS slows down as N increases.
Figure 4 depicts the effects of the cost ratio ki /k, with
fixed k, = $72.40 and N = 500. The OSS decreases
approximately linearly, whereas the unity cost
increases approximately linearly as the cost ratio
increases. It is quite sensible that the increase of k; will
increase the METC and reduce the size of OSS.

Figure 5 presents the effect of the standard devia-
tion ¢ of the manufacturing process for the items when
the process mean 7 does not deviate much from the cen-
ter of specification limits. For supplier B, T = 24.0137

9.90
1 9.80
9.70

9.60

unity cost

9.50

9.40

100 200 300 400 500 600 700 800 900

lot size N

Figure 3. OSS and unity cost versus lot size N.
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9.8
9.6
9.4
9.2

unity cost

8.8
8.6
8.4
0.131  0.135

0.138  0.142

ki/k2

Figure 4. OSS and unity cost versus cost ratio k/k, with k, = 72.4.

and (a + b)/2 = 24. When o increases, the probability of
an item being conforming becomes smaller and this will
make both the OSS and the unity cost increase. A similar
situation with the same reasoning happens as the prior
mean t moves further away from the specification mean
as shown in Figure 6. The parameter, y, represents the
degree of uncertainty for the unknown mean, U. Figure 7
indicates that the increase of y reduces the probability
of an item being conforming and thus the METC
increases, but the OSS is insensitive to the variation of 7.

Table 2 shows that the METC and the OSS for the
variables sampling model are smaller than those for
the corresponding attributes sampling model under the
same probability model and cost structure. This is
because in this study the attributes information is
derived from the variables information. In such a situa-
tion, it is possible to achieve the same power with a
sample size in a variable acceptance sampling plan far
smaller than the sample size for a derived attributes
acceptance sampling plan.

sample size

0.021

0.022 0.023

6. CONCLUSION

In this article, the Deming cost model with normal
distribution of the performance variables is studied
using the Bayesian approach. The prior distribution
for the unknown mean is also assumed normally
distributed. Numerical integration method is employed
to find the optimal solution to the model, which
includes the optimal sample size and the acceptance
limits for the subsequent action. A numerical result is
presented to show how the model parameters, such
as lot size, prior distribution, and cost ratio, affect
the optimal sample size and the minimum expected
total cost. In addition, a method is proposed to
formulate the problem as an attributes sampling model
under the same probability assumptions and cost
structure. This formulation allows us to compute
how much cost is saved for using the variable measure-
ment data instead of the corresponding go/no-go
data.

0.06
0.05
0.04

0.03

unity cost

0.02

0.01

0.00

0.024 0.025

standard deviation of performance variable ¢

Figure 5. OSS and unity cost versus standard deviation o.
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Figure 6. OSS and unity cost versus prior mean T.

Q -

N 2

7]

(3]
= ey
k=
: :
0.01 0.0104 0.0112 0.12 0.0128 0.0136 0.014
prior standard deviation y
Figure 7. OSS and unity cost versus prior standard deviation 7.
Table 2
Comparison between two sampling models for supplier B
Variables sampling Attributes sampling

Lot size N 0SS Acceptance limits [X, Xg] Unity cost 0SS Acceptance number, ¢ Unity cost
100 16 [23.9754, 24.0161] 9.85 25 4 10.18
200 24 [23.9780, 24.0162] 9.73 46 7 10.02
300 30 [23.9791, 24.0163] 9.68 61 9 9.94
400 35 [23.9797, 24.0164] 9.64 68 10 9.88
500 40 [23.9801, 24.0165] 9.62 83 12 9.84
600 44 [23.9804, 24.0165] 9.60 91 13 9.81
700 48 [23.9807, 24.0165] 9.58 98 14 9.78
300 52 [23.9809, 24.0165] 9.57 106 15 9.76

900 55 [23.9810, 24.0165] 9.56 114 16 9.74
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APPENDIX

The objective function is

Min / " [zn:{Min[E(LSnm,)_c, ), E(Lenln, X, )]}

0<n<N
y:()

By taking expectation on Egs. (1) and (2), we obtain

E(Ly|n,x,y) =n-ki + E(M(y)n,X,y) - ki
+ E(Zn_n|n,%,y) - k2
+E(M(ZN—n)|na)_C7y) 'kl

E(Leyin, %, y) =n-ki + E(M(y)|n,X,p) - ki
+(N—n) -k
+E(M(ZN7n)|naX7y) 'kl

We need to compute

(1) E(Zy_n|n,x,y): The expected number of noncon-
forming items in the remaining N-n items of the
lot given the information (n, X, y).

(i) E(M(y)|n,x,y): The expected number of extra

inspections to obtain y conforming items given

the information (n, X, y).

E(M(Zy_yn)|n,X,y): The expected number of

extra inspections to obtain Zy_, conforming

items given the information (n, X, y).

V) Yo E(M(y)|n,%,) - Priyin, 5}.

(i) E(Zy-nln,x,y) = (N —n)(1 — E(P(U)|n, X).
For any U = u, we have E(Zy_,|n, x,y, U =u) =

(iif)

E(Zy_y|n,u) = (N —n)(1 — P(u)).
Therefore,
E(Zy_y|n,x,y,U) = (N —n)(1 — P(U))
E(Zy_yn,X,y) = E[E(Zy_s|n,X,y,U)|n, X, y]
= (N —n)(1 = E(P(U)|n,X,y))
= (N —n)(1 — E(P(U)|n,X)).
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The posterior of P(U) depends on (n,X) only.

- E((1/P(U))|n, %)
1
Y P(w)

(i) EM®y)ln,x,y) =
E(M(y)|n,5c,y, U= u)

U)ln, %, p)]

just
=
=
Bl

,X,y) = E[E(M(y)[n, X, y,

(iil) E(M(Zy_y)In,x,y) = (N —n) {E (P(lU) In, x>_1}
u

EM(Zy-n)ln,x,y, U =u) = (N —n) P(u)
== (51)
E(M(Zy-p)|n,x,y)
= E[E(M(ZN—n)|na xvyv U)|n,5c,y)

= =gy in) -1}

(iv) 534E(54(Vﬂnaxay)'Pf{ﬂnvx}

-Er#lmy
<P 1 x) é:oy - Pr{yln, x}
E<m

At the second stage decision, decision “Sn” is
superior to “CN’* if

n,x) - Pr{y|n, x}

M:

n x) ‘n-(1—E(P(U)|n, Xx)

E(LSn|n7)_C7y) < E(LCN|n7)_Cay)'
E(LSn|n,5€7J/) _E(LCN|n7xvy)
— E(Zy 2l %,9) ko~ (N—n) ks
(N—n)-(1— E(P(U) %) ks —
0

(N—n)-ki)

IA

Thus, we obtain Eq. (3)
E(Lgy|n,x,y) < E(Lcy|n,X,y) if and only if

L — E(P(U)|n,x) <7

The inner part of the objective function [Eq. (6)]
can be simplified as follows:

(Lsuln,x,),E(Len |n,x,)]}-Priy|n.x}

Z{Mln
—Z{ n- k] +E

ki +E(M(Zy-p)|n,x,p)-ki]
+Min[E(Zy_,|n,x,y) ko,(N—n)

megkl

- (B (gg|mx) 1)
+(N—n)-Min[(1-E(P(U)|n,X) ka,ki1]}

H%“Q
mg_gh

n-(1-E(P(U)n,x)) -k
+Min{(1-E(P(U)|n,X)) ~k2,k1}}

0)ln.x.y)

ki]}Pr{ylnx)

n

= {n~k1+y-E( !
y=0

-Pr{y|n,x} =n-k; —|—E(

soen (ol

Finally, the objective function becomes

oy +Min[(1 —E(P(U)|n7>‘c)) -kz,kl}

n,fc) -n-(1—=E(P(U)|n,Xx)) Ky } -g(X|n)dx

(55
=02%2}v{"'k1+<N‘”>'[E(ﬁ)“} "

(&) dx+n-kr- [ (:E(ﬁ

(1 —E(P(U)In,X))'g(XIn)'dX}
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