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Risk of Extreme Events in Multiobjective Decision Trees

Part 2. Rare Events

Hendrik 1. Frohwein,! Yacov Y. Haimes,> and James H. Lambert!

Earlier work with decision trees identified nonseparability as an obstacle to minimizing the
conditional expected value, a measure of the risk of extreme events, by the well-known
method of averaging out and folding back. This second of two companion papers addresses
the conditional expected value that is defined as the expected outcome assuming that a ran-
dom variable is observed only in the upper 100 (1 — «) percent of potential outcomes, where
a is a cumulative probability preselected by the decision maker. An approach is proposed to
overcome the need to evaluate all policies in order to identify the optimal policy. The ap-
proach is based in part on approximating the conditional expected value by using statistics of
extremes. An existing convenient approximation of the conditional expected value is shown
to be separable into two constituent elements of risk and can thus be optimized, along with
other objectives including the unconditional expected value of the outcome, in a multiobjec-
tive decision tree. An example of sequential decision making for remediation or environmen-
tal contamination is provided. The importance of the results for risk analyis beyond the min-

imization of conditional expected values is pointed out.
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1. INTRODUCTION

This is the second of two companion papers on
the averaging out and folding back of measures of
risk of extreme events in decision trees. Decision
trees have found widespread attention in literature
and practice, but their use has commonly been re-
stricted to the optimization of a single objective.
Haimes et al. (1990) have introduced the concept of
multiobjective decision trees (MODT). However,
they identified a difficulty with the averaging out and
folding back of conditional expected values of the
outcome, a measure of the risk of extreme events. The
present paper and its companion in this issue (Froh-
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wein et al. 2000) are devoted to developing methods
to overcome this obstacle.

Frohwein and Lambert (2000) promulgate the
use of some measure of the risk of extreme events in
decision analysis as a complement to the unconditional
expected value of the outcome and review MODTs.

Whereas the first paper deals with the use of the
conditional expected value of the outcome (a loss or
damage), given that the magnitude of the outcome ex-
ceeds a given threshold B (severe events), this paper
investigates an alternative measure of the risk of ex-
treme events. This measure is the conditional expected
value of the outcome, given that the magnitude of the
outcome falls in the upper 100 (1 — o) percent tail of the
cumulative probability distribution of outcomes. This
defines, on the basis of cumulative probability «, a
range of rare events that are known to be of concern to
the decision maker. This type of conditional expected
value can also be interpreted as the “worst 100 (1 — «)-
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in-100 expectation.” Calculating conditional expected
values on the basis of a fixed probability o may be less
intuitive than calculating such values on the basis of
fixed outcome threshold B (cf. Frohwein and Lambert
[2000]). However, it should be noted that agencies of-
ten regulate on the basis of an extreme percentile
F!(a) (e.g., 95th percentile) rather than the probabil-
ity of exceeding some fixed outcome threshold. There-
fore, it is plausible to also consider the conditional ex-
pected value on the basis of a fixed probability
threshold . It is not claimed that this measure of the
risk of extreme events can, by itself, capture all facets of
risk—no measure can. However, the conditional ex-
pected value under consideration here can, possibly in
conjunction with other measures of risk, provide helpful
information to the decision maker. For example, a man-
ager may be concerned about the expected perfor-
mance of his worst of 10 employees (o = 0.9), or an en-
vironmental scientist about the expected contamination
measured in the worst of 100 soil samples (« = 0.99).
The companion paper (Frohwein and Lambert 2000)
provides references on the use of conditional expected
values as a measure of the risk of extreme events.

The following section discusses the problems
with averaging out and folding back conditional ex-
pected values, defined by a fixed nonexceedance
probability «, in decision trees. Next, the develop-
ments to overcome these difficulties are outlined. As
required by the proposed approach, approximate ex-
pressions for the conditional expected values are
then derived and conditions that enable the sequen-
tial optimization of the conditional expected value
are established. Then, the optimization process is
summarized and depicted in a flowchart. After the
key results have been reiterated, an example (con-
tamination remediation) is provided to illustrate the
application of the proposed method. Finally, conclud-
ing remarks highlight the general importance of the
results for risk analysis.

2. PROBLEMS WITH AVERAGING OUT AND
FOLDING BACK CONDITIONAL
EXPECTED VALUES IN DECISION TREES

The conditional expected value of the outcome,
conditioned on the outcome magnitude falling in the
upper 100 (1 — a) percent of possible outcome mag-
nitudes, as a function of the chosen policy s, can be ex-
pressed as

£ (5) = E[X1X = F (e 9)], (1)

Frohwein et al.

where X is a random variable, F~!(-;s) denotes the in-
verse of the cumulative probability distribution of X,
given policy s, and « is the decision maker’s nonex-
ceedance probability of concern. The notation “f,,”
for the conditional expected value follows previous
papers on the topic of conditional expected values as
measure of the risk of extreme events (Asbeck and
Haimes 1984, Haimes et al. 1990). Averaging out and
folding back the conditional expected values f,, can-
not be accomplished in the same manner as for un-
conditional expected values, i.e.,

E[X|X>F ()] # p, E[X, | X, > F'(a)] + ...+
P E[X, 1 X, > F ()], (2)

where p; denotes the probability of obtaining random
variable X, and where the p;’s sum to 1.

Haimes et al. (1990) first identified this difficulty,
which is ascribed to the nonseparability and non-
monotonicity of conditional expected values. Uncon-
ditional expected values, on the other hand, are sep-
arable and monotonic. For a mathematical definition
of separability and monotonicity see, e.g., Li (1990).

Frohwein and Lambert (2000) show that the con-
ditional expected value f,;, conditioned on the out-
come exceeding threshold B, is second-order separa-
ble (Li 1990, Li and Haimes 1990, 1991) because it
can be expressed and optimized in terms of the par-
tial expected value f, ,* and the exceedance probabil-
ity ¢, However, this approach cannot be used for
the conditional expected value f, , because it is infea-
sible to define an f, . * = (1 — o) E[X | X = F (a)]. To
do so would require replacing the outcome threshold
B in the expressions for f, ,* by the threshold F'(«) in
the expressions for f, * (recall that the decision
maker now is assumed to be concerned about out-
come magnitudes that fall in the upper 100 (1 — o) %
of all outcomes). However, here F~!(a) denotes the
inverse probability distribution of outcomes associ-
ated with some policy s at the root node of the deci-
sion tree. Because F~!(a) cannot be known before the
root node is reached, f, ,;* cannot be determined for
the terminal chance nodes of the decision tree, so that
the averaging-out-and-folding-back technique fails
(in the absence of some other, k-th order separable
decomposition of f,,, whose existence or nonexist-
ence remains to be established).

3. OVERVIEW OF THE NEW FOLDING BACK
OF CONDITIONAL EXPECTED VALUES

The insights from the previous section motivate
the development of a different method for eliminating
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at intermediate nodes of the decision tree at least some
policies that are inferior with respect to the risk of rare
events, as measured by the conditional expected value
defined by a fixed nonexceedance probability «.

An overview of the subsequent sections is as fol-
lows. It is assumed that the decision maker is con-
cerned with events that are represented in the right
tails of the probability distributions of outcomes of al-
ternative policies (at the root node of the decision
tree). Following others (e.g., Castillo 1988), it is pro-
posed to replace the tail of the probability distribution
of the outcomes of each overall policy at the root node
of the decision tree by the tail of one of three limiting
distributions. Next, it is convenient to adopt existing
approximations of the conditional expected value f,
in terms of two extremal distribution parameters.
Using these expressions, f, , can eventually be approx-
imated as a function of the partitioning probability a,
the probabilities q, = F(x,) and q, = F(x,) of not ex-
ceeding some damages X, and Xx,, respectively, as well
as an upper bound A of outcome, where appropriate.
Whereas «, x;, and X, (and \) are fixed parameters, the
cumulative probabilities q; and q, are assessed for each
terminal chance node, i.e., they are dependent on the
choice of policy. The averaging-out-and-folding-back
approach can be used on them in a multiobjective de-
cision tree. Conditions are established under which the
derived approximation of the conditional expected
value f, , is strictly increasing or decreasing in both q,
and q,. Under these conditions, the approximation of
f,, is “second-order separable,” i.e., it is a strictly in-
creasing or decreasing function of two measures of
performance (q; and q,), the measures of performance
themselves being expected values and thus separable
and monotonic and lending themselves to averaging
out and folding back (cf. Proposition 1 in Frohwein
and Lambert [2000]). The policy with the minimal
value of f, , will be found among the efficient policies
with respect to min (q;, —q,) at the root node of the de-
cision tree (cf. Proposition 2 in Frohwein and Lambert
2000). Thus, inferior policies (with respect to min [q;,
—(,]) can be identified and eliminated at intermediate
nodes, thereby avoiding averaging out and folding
back of all policies to the root node of the tree.

4. APPROXIMATING THE CONDITIONAL
EXPECTED VALUE

Following extreme-value theory, three possible
limiting distributions for the right tails of the probabil-
ity distributions are defined as follows (Castillo 1988):
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FGumbel(X) = eXp( _eik(X7V))9 (3)

where v is the location parameter and k is the scale
parameter;

k
FFrechel(X) = eXp<_( > > )a X > )\a (4)
x- F(x) = 0 otherwise,
where \ is the lower bound of the distribution (loca-
tion parameter), v is the scale parameter, and k is the
shape parameter;

Fwepa(x) = GXP(—<)\ v X)K> s X =N, 5)

F(x) = 1 otherwise,
where \ is the upper bound of the distribution (loca-
tion parameter), v is the scale parameter, and Kk is the
shape parameter.

According to Ang and Tang (1984), the Gumbel
(Gumbel Type I) distribution can be used for approx-
imating a distribution with an exponentially decaying
tail and no upper bound, the Frechet (Gumbel Type
IT) distribution for a distribution with a polynomially
decaying tail and no upper bound, and the Weibull
(Gumbel Type I1I) distribution for a distribution with
an upper bound of \. Although not all distributions
converge to one of the three Gumbel Types, they are
appropriate for many engineering applications (Ang
and Tang 1984, Castillo 1988).

Mitsiopoulos et al. (1991) have shown that for
the three limiting tail forms under consideration, the
conditional expected value f,, can be approximated
as a function of the extremal parameters u, and 3,
(see Table I). The “characteristic largest value” u, is
defined as

u, =F'(a), (6)
and the “inverse measure of dispersion” §, is defined as

1 du,

8. dln(n)’ ™

Table I. Conditional Expected Value for Rare Events
(Mitsiopoulos et al. 1991)

Tail equivalence fy. = E[XIX=F(a)]

|—

Gumbel (Type I) u, + 3
1 1
Frechet (Type II) u, + 5 +—_—
@ 2 _ l
(.~ )
. 1 1
Weibull (Type III) u, +

“T 8. BN —u)d, + 1)
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where the definition n = 1/(1 — «) is adopted. Mit-
siopoulos et al. (1991) also investigated the errors in-
troduced by the approximations and found them to
be quite small for the examples that they examined.
For a = 0.98, the error was found to be no larger than
3.3%. Furthermore, the error decreased with increas-
ing « for all investigated cases.

Once an appropriate limiting form (Gumbel,
Frechet, or Weibull) for the tail of the original dis-
tribution has been assumed, the extremal parame-
ters u, and 3, and hence f,,  can be expressed as
functions of two cumulative probabilities q, and q,,
which are associated with two damage levels x; and
X,. (Pratt et al. [1995] also use two fractiles to esti-
mate the parameters of some two-parameter distri-
butions.) To do so, q, and q, are equated with
Fiu(x) and Fp, . (X,), respectively, where Limit =
{Gumbel, Frechet, Weibull}. It is assumed that, for
the Frechet distribution, the lower bound on the
outcome is zero for all policies and that, for the
Weibull distribution, the upper bound is the same
and known for all policies.

Table II (Frohwein 1999) provides the resulting
approximate expressions for the conditional ex-
pected value f,, that are functions of q, and q, (as-
sessed for each terminal chance node and to be opti-
mized—to minimize f,.—at the root node by
choosing an appropriate policy), and that have the
parameters X;, X,, «, and possibly \; these are fixed.
The major advantage provided by the expressions in
Table II is that, unlike f,, or any of the distribution
parameters, the cumulative probabilities q, and q,, by

Table II. Conditional Expected Value in Terms of Two
Fractiles and the Decision Maker’s Partitioning
Probability a = 1 — 1/n (Frohwein 2000)

Assumption of

distribution tail f,., = E[XI1X=F(a)]

In(—In(q,)) —In(1 —a) +1
In(—1n(q,)) — In(—In(q,))

Gumbel (Type I) X,+ (X; — X5)

Frechet (Type II)

1n<1n(QZ)> !
kK = &>1 xl(—ln(ql)'n)l/k 1
ln(ﬁ) 1- K
X2
Weibull (Type III)

1n<1n(QZ)>

In
L C TP

(2]

1 1/k 1
A — ()\ - Xl)(—ln(ql)?n) [1 + l]
k
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virtue of their separability and monotonicity as ex-
pected values, can be averaged out and folded back to
the root node of the decision tree for any given policy
(cf. Proposition 1 in Frohwein and Lambert 2000).
With the assumption of a Gumbel Type for the tail, f, ,
is then obtained at the root node by using the results
in Table II. Consistent with Mitsiopoulos et al. (1991),
where the product u, 8, has to be larger than 1 for the
conditional expected value f, , to be positive for the Fre-
chet tail, it will be required here that k > 1 for that
particular tail type.

Note that although the value of a is chosen on
the basis of the decision maker’s concerns (recall that
the decision maker is assumed to be interested in the
“upper 100 (1 — a) percent of outcomes”), the pairs
(x,, q;) and (x,, q,) merely serve to calculate the con-
ditional expected value. The appropriate selection of
x, and x,, X; < X,,is driven by the requirement that the
pairs (x;,q;) and (X,, q,) lie in the probability distribu-
tion tails and by further conditions to be established
below (cf. Corollary 1).

5. SEQUENTIAL OPTIMIZATION OF THE
CONDITIONAL EXPECTED VALUE

It is unclear a priori whether the conditional ex-
pected value f{, is a strictly increasing or decreasing
function of g, and q,. Such clear behavior would be
useful for a sequential elimination process of inferior
policies at intermediate nodes in the decision tree. If f, ,
were strictly increasing in g, and strictly decreasing in
q,, for example, policy alternatives not efficient with re-
spect to the multiobjective optimization min (q;, —q,)
could be eliminated at intermediate nodes of the deci-
sion tree as k-th order separability is invoked (Geof-
frion 1967, Haimes et al. 1990, Li 1990, Li and Haimes
1990, 1991, Frohwein and Lambert 2000). To establish
conditions for strictly increasing or decreasing behavior
of f, ., the partial derivatives df, ./dq, and of, ./dq, are de-
termined on the basis of Table II (Frohwein 2000).

Prorosition 1. For each of the three limiting distri-
butions considered in this paper (Gumbel, Fre-
chet, or Weibull), it holds that df, ./dq, = 0 and
df,/oq, = 0 if « is not smaller than o, as de-
fined in Table III.

Table III shows that, depending on the limiting
distribution, . is a function of q, alone (Gumbel),
or o, is a function of q, and q, and has parameters x,
and x, (Frechet, Weibull) and N (Weibull). (Recall
that x,, x,, and \ are fixed parameters, in contrast to q,



Extreme Events in Decision Trees, Part 2

Table III. Policy Elimination at Intermediate Nodes
for Decision Maker’s Partitioning Probability
a = o, (Frohwein 2000)

crit.

Assumption of
distribution tail Qi

Gumbel (Type I) 1+ exp(1)Ingq,

Frechet (Type II)
1n< In ((lz ))
- @)

1
L + exp In(q,)
In(X) (1 - l] ?
Xy
Weibull (Type IIT)
1n<1n(q2)>

In
k = ______(ﬂl_)_ >0 1+ exp[1 i l] In(q,)

ln<i__};’§_?>

k

and q,, which are influenced by the choice of policy.)
For the derivations that lead to Proposition 1 and the
results in Table III, see Frohwein (2000). Further note
that o, is bounded from above by q,, regardless of
the tail type.

Corollary 1 follows directly from Proposition 1
and Geoffrion (1967) as well as Li (1990) and Li and
Haimes (1990, 1991) (see Proposition 2 in Frohwein
and Lambert 2000).

1-g
1.E12 1.E10 1.6-08

1.E-06
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Cororrary 1. For a = «, for all policies s, the policy
with the minimal conditional expected value f, , is
found at the root node of the decision tree among
the efficient policies with respect to the multiob-
jective minimization of the cumulative probability
q,(s) = F(x;; s) and maximization of the cumula-
tive probability q,(s) = F(x,;s) [or minimization of
—qy(s) = —F(x;;9)].

Note that the same tail form (Gumbel, Frechet,
or Weibull) has to be assumed for all efficient policies
and that the value of o, changes with the assumed
tail form (Table III). The damage levels x, and x, must
be chosen such that a = a, for all policies s at the
root node of the decision tree.

Figure 1 interprets Table III graphically for the
Weibull tail with contour plots for o, as a function
of q, and q, (with parameters x, = 100,x, = 110, and
N = 120). The notation “0.9,” denotes i 9’s to the
right of the decimal point (e.g., 0.9, = 0.9999). As an
example, for values of q; and q, from the high-
lighted area in the contour plot, f,, = 0.99 decreases
with decreasing q, and increasing q, for the assumed
Weibull tail.

The relation between x,, X,, q;, q,, and a for two
different policies is depicted in Fig. 2. Note also from
the figure how the choice of larger or smaller q;, q,
with fixed x;, x, would affect the weight of the distri-

1.E-04 1.E-02

1.E+00
1.E+00

-
ocrit = 0.9 \

ocrit = 0.999 2

ocrit = 0.99999

ocrit = 0.999999 .

- 1.E-08

-
‘,‘ J1=Q2

’

- 1.E-10

- 1.E12

Fig. 1. Decision maker’s «; as a function of q, and q, for x, = 100, x, = 110, A = 120, for an assumption of

the Weibull tail.
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{9(s=2) X policy s = 2
0.95 4 %(2)
Jai(1)
0.9 4
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|
| Xy X2 Fllo,s=1) Flo,s=2)
0.8

X——>>

Fig. 2. Policy s = 1 is preferred to policy s = 2 because q,(s = 1) < q,(s = 2) and q,(s = 1) > q,(s = 2).

bution tail and thus the magnitude of the conditional
expectation f, .

The approach presented here for minimizing f, , is
wholly compatible with the addition of other objec-
tives, such as minimizing cost or the unconditional ex-
pected value of the outcome. The policies that are effi-
cient with respect to minimizing f,, and optimizing the
additional objectives will be found in the expanded set
of policies that are efficient with respect to min (q,,
—(,) and the optimization of the additional objectives
(see Proposition 3 in Frohwein and Lambert 2000).

6. OPTIMIZATION PROCEDURE

The approach introduced in this paper is illus-
trated in a simplified optimization process flowchart
in Fig. 3. The dashed-line box indicates the step that is
different from (i.e., additional to) the optimization
approach for f,, (cf. Frohwein and Lambert 2000).
Before the multiobjective optimization is performed
by using the decision tree, an approximation of the
conditional expected value f,, that is second-order
separable has to be found. This approximation is a
function of two cumulative probabilities, q, and q,,

that are then averaged out and folded back in the
multiobjective decision tree (rather than f,,* and ¢,
in the case of the conditional expected value f, ;). The
remainder of the process is comparable to that de-
scribed for f, , (Frohwein and Lambert 2000).

7. OVERVIEW OF KEY RESULTS
Following are key implications and results of the
preceding sections:

¢ Based on previous approximations of the con-
ditional expected value f, , in terms of two ex-

(n-1)

{ approximate |

i ! additional
; cond.exp. ! objectives
i value
L \ convert to
minimize (n+1) reconvert to extract
.. igi —  optimal
condi exp. objectives ofrlgmal S(Sution
value and optimize ormat

Fig. 3. Flowchart of optimization process for {,_..
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tremal distribution parameters (Mitsiopoulos
et al. 1991), an expression for f,, = {,, (q;, qx;
X;, X,, \) can be derived for the policies at the
root node of the decision tree by assuming the
right tail of either a Gumbel, Frechet, or
Weibull distribution (Table II).

e The approximation of the conditional ex-
pected value f, , relies on statistical estimation
of the cumulative probabilities q, and q, for
the terminal chance nodes and on preselection
of the parameters X,, X,, Ayeipur> a0d .

* When a = max; o, (qi(8), 92(8); X1 Xo Myeivun)
(see Table III) holds for the policies s at the
root node of the decision tree, policies that are
not efficient with respect to min (q,, —q,) can
be eliminated at intermediate nodes of the de-
cision tree (Corollary 1).

¢ A convenient upper bound on o, is max, q,(s).

8. EXAMPLE

Consider the problem of mitigating soil contam-
ination at a site as represented by the decision tree in
Fig. 4. In this example, attention will be focused on
the minimization of f, , with the understanding that
in practice other objectives (e.g., unconditional ex-
pected damage) could be added straightforwardly to
the analysis in an MODT (Haimes et al. 1990).

In this example, the decision maker is concerned
with the worst 1-in-100 average residual soil contami-
nation (in parts per billion, ppb) measured after com-
pletion of the mitigation efforts, i.e.,a = 0.99.The first
stage of decision making mandates a choice between
two alternative sampling plans for site characteriza-
tion. Using the chosen sampling plan, the level of dis-
persion (high/low) will then be determined; the proba-
bilities of identifying a high or low level of dispersion
are dependent on the sampling plan. Once the con-
tamination level is known, the second phase of deci-
sion making must choose an appropriate remediation
of the contaminated site (e.g., soil excavation vs. pump
and treat). Finally, after completion of the treatment,
the residual contamination level (in ppb) will be mea-
sured. The cumulative probabilities g, and q, for the
residual contamination levels x, = 100 ppb and x, =
110 ppb upon completion of mitigation, as a function
of the chosen sampling plan, treatment option and the
dispersion level, have been assessed by a scientist and
statistician and are noted at the terminal chance nodes
in the format {q,, q,} in Fig. 4. Single-objective optimi-
zations (“max q,” and “min q,”) using the decision tree
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reveal that no overall policy s has a value of q,(s) larger
than 0.9872 or a value of q,(s) smaller than 0.9035.
Consequently, the choice of x, and x, is indeed feasible
for the elimination of (sub) policies at intermediate
nodes, given a = 0.99, because a; < max, q,(s) =
0.9872 < a = 0.99 and min, q,(s) > 0.9 (i.e., assumption
of events from the distribution tails holds).

The {q,, q,} vectors are averaged out and folded
back through the decision tree according to the optimi-
zation strategy min (q;, —(,). At the intermediate
nodes and the root node in Fig. 4, only efficient policies
are indicated. In this example, four out of eight possible
overall policies are efficient at the root node; they are
policies (1.1, (2.1, 2.3)), (1.2, (2.5, 2.8)), (1.2, (2.6, 2.7)),
and (1.2, (2.6, 2.8)), the numbers referring to the se-
lected chance nodes at both stages of decision making.

On the basis of Corollary 1, the policy with the
minimum approximated f,, value is known to be
among the four efficient policies. The approximated
value of f, , can be calculated with the formula for the
appropriate tail distribution from Table II.

Consider that the analyst comes to the conclu-
sion that none of the efficient policies at the root
node has a probability distribution with an upper
bound; however, whether a Gumbel or a Frechet tail
would be more appropriate for the non-dominated
alternatives is unclear. Because the conditions of
Corollary 1 hold for both tail types, the approximated
conditional expected value f,, can be calculated for
the assumptions of both Frechet and Gumbel tails.
The sensitivity of the results (i.e., the identity of the
policy with the lowest value of f, , and the value of the
minimal f, ) to different assumptions of tail distribu-
tions can then be examined. In this particular case, it
is found that the identity ((1.1, (2.1,2.3))) of the pol-
icy with the lowest value of f,, does not change, re-
gardless of the two approximation types used. How-
ever, the assumption of a Frechet-type tail entails a
slightly larger minimum value of f,, (127.2 ppb) than
the Gumbel-type tail (124.6 ppb) (see Table 1V).

Figure 5 illustrates the progress of the sequential
eliminations associated with the averaging-out-and-
folding-back procedure by indicating at which stage
of the optimization inferior alternatives are excluded
from further consideration. At the first stage of fold-
ing back (decision nodes A through D), two out of
eight policies—those that include chance node “2.2”
as a potential outcome—can be eliminated. At the
next averaging-out stage (chance nodes “1.1,” “1.2”),
one more policy is excluded from further consider-
ation. Finally, at the root node R, one more policy is
identified as inferior. Only four out of the original
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{q1, 92}
{0.89,0.94}
Remediation Treatment T1
Treatment T2
A {0.9, 0.935)
0.2 / {0.89,0.94}
Dispersion low
{0.99, 0.999}
{0.97,0.9872} {0.97,0.98}
{0.954, 0.972} high - {0.99, 0.999}
Site
Chara'cteri- {0.97,0.98}
zation 10.97,0.9872)
{0.9035, 0.94925}
R {0.9445, 0.973965}
{0.9165, 0.96875}

_—

{0.9,0.93}
0.9, 0.93}
Plan 2 {0.9, —
{0.92,0.96} T1

T2 /
C 2.6 {0.92,0.96}

—~——

{0.9035, 0.94925}
{0.9445, 0.973965 }
{0.9165, 0.96875}

{0.99,0.9999}

D |

{0.99, 0.9999}

{0.91,0.985}
2.8 | {0.91,0.985)

Fig. 4. Decision tree where {q,, q,} represent the cumulative probabilities of 100 ppb and 110 ppb, respectively, of post-
remediation soil contamination.

eight policies remain (highlighted in Fig. 5 by a con- The example has shown that not all remediation
necting line) that are efficient in terms of min (q,, policies need to be evaluated. The risk of extreme re-
—q,) and that need to be screened for the minimal sidual contamination has been handled as an optimal

value of f, , as described previously. balance of two extreme probabilities of exceedance.
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Table IV. Values of £, for Efficient Policies in Example—
Sensitivity Analysis

f,. (in pbb)
Policy Gumbel Frechet
a1, (2.1,2.3)) 124.6 127.2
(1.2,(25,2.8)) 149.7 162.5
(1.2,(2.6,2.7)) 135.5 141.5
(1.2, (2.6,2.8)) 131.1 135.4

Note: Bold indicates policy with the lowest value of f,

9. CONCLUDING REMARKS

In this paper, an approach has been presented
for sequential decision making when one of the ob-
jectives is minimizing the risk of rare events. Its nov-
elty is that, under the assumption of a limiting form of
the tails of the probability distributions of the policies
at the root node, it enables the use of the well-known
averaging-out-and-folding-back procedure in order
to sequentially eliminate some subpolicies at inter-
mediate nodes of the decision tree that are inferior
with respect to the risk of rare events, as measured by
f, .. Similar to the minimization of the conditional ex-
pected value f,; (Frohwein and Lambert 2000), the
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risk of rare events is separated into two constituent el-
ements of risk, in the present case “q,” and “—q,.” The
concept of multiobjective decision trees is then used
for simultaneously minimizing these two substitute ob-
jectives (additional objectives may be considered).
The companion paper (Frohwein and Lambert
2000) addressed the feasibility of combining the ap-
proach to optimizing the risk of severe events with
other techniques such as screening methods to thin
the set of efficient subpolicies at intermediate nodes.
These remarks apply to the present approach as well.
The approaches for sequential optimization of
the risk of rare and severe events presented in this
and the companion paper constitute both an exten-
sion and an application of the concept of multiobjec-
tive decision trees (Haimes et al. 1990) and of previ-
ous results in decision analysis with attention to
extreme events. It is interesting to note that the ap-
proaches taken to decompose the conditional ex-
pected values f,, and f,, (Frohwein and Lambert
2000) are different (approximation and use of two cu-
mulative probabilities q; and q,, and use of partial ex-
pected value f,,* and exceedance probability &, re-
spectively). At the same time, the underlying approach
to optimizing f,, and f,; is the same—use of sec-
ond-order separability and multiobjective decision

-0.94 -
005l ¢ (12(2528)
e (12,252.7)
& __— eliminated at node 1.2
-0.96 -
\ eliminated at node R
"9z N (1.2,(2.6,2.8)) [
0or ] - (1@ 1.24) (05 18224
- T / eliminated
.............................. - RN at node A
(1.2,(2.6,2.7)) = ™. TN
..-\_“_h.' \...‘. \""k.,
-0.98 - e NN
N \(141,22.2.3)
minimum f‘,,()L\""~~_>
o066 (1.1,(2.1,2.3)) ™
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
q4

Fig. 5. Elimination of inferior policies where the policy with the minimum f,, (in ppb) is highlighted.
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trees. This proves the flexibility of the approach that
has been presented in the two papers—being applica-
ble to various nonseparable measures of the risk of
extreme events—and emphasizes its importance for
risk analysis beyond the optimization of conditional
expected values. It is thought that these new develop-
ments can advance the practice of incorporating mea-
sures of risk of extreme events in its different facets
into multistage decision analysis and decision making.
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APPENDIX: NOTATION

o Decision maker’s nonexceedance proba-
bility (cumulative probability) of concern
B Decision maker’s outcome threshold of
concern
oy 0f,/0q, = 0 and df,./dq, = 0 for decision
maker’s a = a;,
d, Inverse measure of dispersion
¢,  Probability of outcome X at least attaining
threshold B, b,, = P(X = B)
N\ Distribution parameter (lower/upper bound)
d-/0-  Partial derivative
E[-] Expected value
E[-lcondition] Conditional expected value, given
some condition

exp(+) exponential function
F!(-) Inverse cumulative probability distribu-
tion function
F!(~;s) Inverse cumulative probability distribu-
tion function, given policy s
f,, Conditional expected value of outcome X,

given that the magnitude of the outcome
falls in the upper 100 (1 — «) percent tail
of the cumulative probability distribution
of outcomes, f,, = E[X | X = F!(a)]

f,, Conditional expected value of outcome
X, given that the magnitude of the out-
come attains at least the threshold B, f,, =
E[X I X = B]

f,z* partial expected value of outcome X,
given that the magnitude of the outcome
attains at least the threshold B, f,;* = ¢,

Frohwein et al.

i Index
k Distribution parameter
In(-) Natural logarithm
max Maximize
max; {argument} Select i such that the argument,
which changes with i, is maximized
min  Minimize
min; {argument} Select i such that the argument,
which changes with i, is minimized
min (-, -) Multiobjective minimization with respect
to two objectives
n n=1/(1-a)
d1,q, nonexceedance (cumulative) probabilities
in the tail of the outcome probability
distribution
q.(s), qx(s) Nonexceedance (cumulative) probabili-
ties in the tail of the outcome probability
distribution of some policy s
s  Policy (at root node of decision tree)
u, Characteristic largest value
v Distribution parameter
X;, X, Damage levels from the tail of the proba-
bility distribution of damages
x  Realization of X (outcome, damage)
X Random variable
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